Расчет усилителя с эмиттерной стабилизацией по переменному току
Обмен учебными материалами


Расчет усилителя с эмиттерной стабилизацией по переменному току



Проведем анализ усилителя с эмиттерной стабилизацией с использованием математической модели транзистора. На рис. 64,а показана эквивалентная схема усилителя, в которой транзистор заменен схемой замещения. Для упрощения анализа в эквивалентной схеме замещения транзистора источником тока и резистором пренебрегаем, т. к. значение велико ( ), а мало ( ).

Параметры элементов усилителя (в частности, емкости конденсаторов , и ) выбирают таким образом, чтобы были малы реактивные сопротивления этих элементов в заданном диапазоне частот. Соответственно, в линейной эквивалентной схеме пренебрежем реактивными сопротивлениями конденсаторов , и . Транзистор для усилителя выбирают с такой предельной частотой , которая не меньше верхней границы полосы пропускания. Поэтому в линейной эквивалентной схеме усилителя для средних частот не используют емкости транзистора. Пренебрежение емкостями позволяет все коэффициенты при расчете усилителя считать вещественными и постоянными.

а) б) Рис. 64 л16р3

Поскольку нас интересуют только переменные составляющие токов и напряжений, то величиной и сопротивлением источника питания пренебрегаем. Будем считать, что сопротивление источника входного переменного напряжения . При правильном выборе емкости конденсатора резисторы и практически не оказывают влияние на коэффициент усиления усилителя, поэтому исключим их из эквивалентной схемы.

Линейная эквивалентная схема усилителя с линейной стабилизацией показана на рис. 64,б. Из этой схемы видно, что для переменных составляющих токов и напряжений резисторы и включены параллельно. При ручных графических расчетах этот факт находит отражение в том, что на выходных характеристиках строят так называемую линию нагрузки на переменном токе ЛН~, наклон которой определяется величиной (рис. 65). Именно по линии ЛН~ перемещается рабочая точка РТ (не НРТ!), характеризующая режим работы усилителя при наличии переменного входного сигнала .

Рис. 65 л16р5

На рис. 65 указана амплитуда напряжения на нагрузке, равная амплитуде переменной составляющей напряжения , и соответствующие предельные точки на линии ЛН~. При этом предполагается, что ток базы изменяется в пределах от до . Коэффициент усиления данной схемы по напряжению определяется выражением: , где — амплитуда входного напряжения. Напряжение на нагрузке связано с током коллектора следующей зависимостью:

В силу второго закона Кирхгофа можно записать, что . В свою очередь, напряжения, входящие в последнюю формулу, определяются как



.

Подставив выражения для напряжений в формулу для , с учетом линейности модели и связи между током базы и током коллектора , получим выражение следующего вида:

.

Если величина велика, то в знаменателе можно пренебречь слагаемым . Кроме того, если при расчетах не задается сопротивление нагрузки, или сопротивление нагрузки много больше сопротивления резистора , то формула для существенно упрощается:

Сопротивление характеризует вполне конкретный транзистор и может существенно меняться от экземпляра к экземпляру. Чтобы обеспечить независимость коэффициента усиления рассматриваемого усилителя от этого параметра транзистора, последовательно с конденсатором может быть включен дополнительный резистор . На рис. 60 данный резистор показан штриховыми линиями. Очевидно, что на задание НРТ этот резистор не влияет. Если , то коэффициент усиления схемы будет определяться следующим выражением:

Ведение дополнительного сопротивления может потребовать учета величины сопротивления . Если при этом учитывать сопротивление нагрузки, то выражение для коэффициента усиления примет следующий вид: Для рассматриваемого каскада значения коэффициента усиления по напряжению редко превышают 4…5. Следует отметить, что каскад является инвертирующим, т. е. при усилении гармонического сигнала разность фаз выходного и входного сигналов в полосе пропускания будет равна 180°.

Выбор емкости конденсаторов , и связан с необходимостью обеспечить незначительное емкостное сопротивление этих элементов в полосе пропускания усилителя. Как известно, емкостное сопротивление конденсатора емкостью на частоте определяется выражением . Следовательно, увеличением емкости конденсаторов можно добиться отсутствия влияние с их стороны на сигнал, что удовлетворяет рассмотренной математической модели. Однако чрезмерное увеличение емкости конденсаторов не желательно, т. к. ведет к увеличению габаритов конденсаторов и к другим негативным явлениям. Определим верхние границы для емкостей конденсаторов, входящих в схему.

Конденсатор совместно с нагрузкой образуют для переменного напряжения, присутствующего на выходе усилителя, делитель. Чтобы обеспечить на нагрузке переменное напряжение с амплитудой необходимо, чтобы на коллекторе транзистора присутствовало напряжение . Емкость конденсатора , следовательно, можно определить из условия . Если принять, что , то . В формуле в качестве частоты должна выступать минимальная (нижняя) частота полосы пропускания. Емкостное сопротивление конденсатора должно быть много меньше сопротивления . По аналогии с формулой для емкости можно записать, что .

При задании емкости конденсатора следует учитывать, что для переменного напряжения он образует делитель совместно с входным сопротивлением собственно каскада на транзисторе. Определим это сопротивление. С учетом емкостного сопротивления конденсатора расчетная схема (см. рис. 64,б) примет следующий вид, показанный на рис.66. Входное сопротивление транзисторного

Рис. 66 л16р6

каскада определяется как , где можно найти, исходя из закона Кирхгофа: . С учетом того, что , запишем:

,

тогда

.

Сопротивление называют входным дифференциальным сопротивлением транзистора в схеме с ОЭ. Если в схеме присутствует дополнительное сопротивление , оно должно быть учтено в выражении для . Емкостное сопротивление конденсатора должно быть много меньше сопротивления , следовательно можно записать, что .

В ряде случаев емкости конденсаторов , и могут назначаться из требования обеспечения заданной АЧХ усилителя.


Последнее изменение этой страницы: 2018-09-12;


weddingpedia.ru 2018 год. Все права принадлежат их авторам! Главная